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During the sorption of swelling agents in amorphous, but crystallizable, glassy polymers local 
crystallization takes place. Previous work has shown that the weight gain and overall crystallization 
kinetics depend on the polymer/penetrant interactions and the dimensions of the sample. In this paper 
we propose a mathematical model for the process which includes four important effects: time 
dependent polymer swelling, blocking of diffusion by crystallites, occlusion of penetrant by developing 
crystallites, and macrovoid formation. The model predicts four limiting regimes of behaviour according 
to the values of the dimensionless crystallization rate, ~, and the dimensionless sample half thickness, 2p. 
Analytical solutions are developed for each limiting case, with the corresponding criteria for their 
application to real systems. The model successfully predicts the variety of behaviours observed 
experimentally. 

(Keywords: macrovoids; cavitation; solvent induced crystallization; anomalous diffusion; non- Fickian 
diffusion) 

INTRODUCTION 

Certain crystallizable polymers can be obtained in the 
glassy state without significant levels ofcrystallinity. This 
occurs when macromolecules with relatively stiff back- 
bones are rapidly quenched from the amorphous melt. 
The time necessary for such molecules to crystallize 
greatly exceeds that required to quench the melt to the 
glassy state. The result is an amorphous, crystallizable 
glass, hindered kinetically from assuming its energetically 
favoured (semi-crystalline) configuration. Introduction of 
an interactive diluent removes these hindrances by 
plasticizing the material locally; hence, the glass will 
crystallize during the permeation of the diluent into the 
specimen. Previous work t'2 focused on the nature of the 
interaction between a polymer diluent pair. Interactive 
liquids are generally condensable, low molecular weight, 
organic compounds soluble enough in the polymer to 
depress the glass transition temperature below the 
environmental temperature. This implies the existence of 
a threshold concentration necessary to induce crystalli- 
zation. In the following sections we consider situations 
where the external penetrant activity significantly exceeds 
the threshold level. Diffusion in crystallizable glasses 
below the threshold would resemble the sorption of 
vapours in amorphous, glassy polymers. Appropriate 
descriptions of this situation were reviewed by Frisch 3 as 
diffusion and sorption below the glass transition. 

Diffusion with induced crystallization has been studied 
for a variety of polymers, all with relatively stiff 
backbones. These include cellulosics 4, poly(ethylene 
terephthalate) (PET)~-12, bisphenol-A-polycarbonate 
(pc)~3-20, poly(ethylene 2,6-naphthalate) (PEN) z~, iso- 
tactic polystyrene (IPS) 22, poly phenyleneoxide (PPO) 23, 
and polysulphone 24. The process can be discussed in 

* Current address: Department of Chemical Engineering and Applied 
Chemistry, Columbia University, New York, 10027. 

terms of three coupled phenomena: the transport of the 
diluent into the polymer, the local crystallization of the 
specimen, and the formation of macrovoids (i.e. 'cavi- 
tation') which results from the first two. The present work 
proposes a mathematical model for this coupled transport 
and morphological development. Before proceeding, we 
review briefly the significant aspects of this problem. 

BACKGROUND 

Moving boundary phenomena 
In PET s'9, P C  16"t7'20 and IPS 22, the migration of 

interactive diluents is accompanied by a moving 
boundary reminiscent of those observed during non- 
Fickian diffusion in noncrystallizable glassy polymers 25. 
The boundary separates a region of highly swollen 
material, capable of crystallization, from a relatively 
unperturbed glass. While much of the recent litera- 
ture 8'9'11'12 claims this diffusion is Fickian, the moving 
boundary suggests it is essentially non-Fickian. Kam- 
bour 14 recognized this fact for polycarbonate systems. In 
PET films exposed to highly interactive diluents, 
Makarewicz and Wilkes 9 observed a crack spanned by 
plastically deformed material preceding the advancing 
boundary. The crack did not appear for less interactive 
liquids. Turska 16'~ 7 noted 'pinlike crazes' perpendicular 
to the boundary in PC films immersed in a variety of 
ketones. Current theories for non-crystallizable glassy 
polymers relate the moving boundary's velocity to the 
mechanical response of the polymer under osmotic 
swelling stresses. The response is system specific; 
microfailure or crazing mechanisms apply for severe 
interactions 26 while a phlegmatic viscous response 27'2a 
appears appropriate for other systems. Crystallizable 
systems of practical importance evidently involve the 
former. 

Desai 8 and Makarewicz 9 measured the kinetics of 
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moving boundary penetration in thick PET slabs for a 
variety of diluents. The penetration depth generally 
increased linearly with nil, indicating a diffusional 
limitation. Turska ~6'~7 and Wilkes 2° found similar 
behaviour for ketones in PC. 

Weight gain kinetics 
The weight gains in the systems discussed above also 

generally increase linearly with x/~, but some systematic 
deviations from this are known. In thick PET films 9, 
weight gain continues even after complete penetration of 
the sample by the moving boundary. In thin PC 14'15'19 
and IPS 22 films weight gain initially increases linearly 
with time (i.e. Case II behaviour). Weight gain sometimes 
increases more slowly than ~ and uptake curves with 
peaked maxima have also been reported for PET 7'9, 
PC 13-15'17'19'20, and IPS 22 systems. A systematic 
presentation of weight gain anomalies is given in a 
companion publication 29. 

Crystalline morphology 
Desai 8 and Makarewicz 1° determined the nucleation 

behaviour and crystalline morphology of PET crystal- 
lized by liquids using small angle light scattering (SALS) 
and scanning electron microscopy (SEM). SALS revealed 
spherulitic crystallites which developed immediately 
behind the moving boundary from rod-like precursors. 
SEM showed uniformly sized spherulites suggesting 
athermal nucleation. Spherulite sizes (2-3/~m) were not 
strongly solvent or temperature dependent. Parlapiano 
and Wilkes 2° found similar morphologies in PC systems. 

Crystallization kinetics 
During solvent sorption, penetrant molecules migrate 

towards the film's centreline, plasticizing the internal 
portions of the sample. Crystallites then develop and grow 
to their maximum size. Clearly, two rate processes govern 
the overall crystallization rate: solvent migration into the 
sample's interior and crystallite growth in the plasticized 
elements of the sample. The slower process will control the 
overall crystallization rate, hence, the experimentally 
measured crystallization kinetics are discussed in terms of 
a rate limiting process. 

Sheldon 5'6 measured the overall crystallization kinetics 
by density for PET films (0.02~).04 cm thick) immersed in 
ketones; the data indicated a diffusion controlled process. 
Desai s performed transient wide angle X-ray scattering 
experiments and also found diffusion controlled crystalli- 
zation in PET films (11.5 mm thick) exposed to dioxane 
and nitromethane. 

Crystallization in PC systems apparently departs from 
diffusion control. For example, light microscopy 16,17 
showed a distinct crystallization 'front' lagging the 
moving boundary for PC films immersed in ketones, 
indicating that crystallites develop slowly following 
plasticization. Cohen et alJ 9 observed sorption overshoots 
in thin PC films exposed to acetone (but not in thicker 
specimens) which were attributed to crystallite growth 
control of the overall crystallization kinetics; solvent 
migrates into the film in a relatively short time and 
subsequent crystallite growth occludes solvent causing 
desorption to produce an overshoot TM 0,14,1 s,17,22. 

Zachmann 7 developed a mathematical model for the 
overall crystallization kinetics during solvent sorption in 
films. The simplifying assumptions were: 

(a) solvent diffuses into the film as a discontinuous front 
advancing linearly with x/~, 

(b) spherulitic crystallites develop behind the front from 
pre-existing nucleii (athermal nucleation), and 

(c) an Avrami equation governs the volume fraction 
crystallized at a given location as a function of time after 
the front arrives. 

Zachmann's treatment predicts overall crystallization 
kinetics controlled either by solvent diffusion or crystallite 
growth depending on the ratio of the time scale for film 
penetration by the front to that for complete crystallite 
development. 

Makarewicz 1° theoretically analysed the effect of 
interactive solvents on the crystallite growth rate in PET 
by adapting the kinetic nucleation model for crystalli- 
zation developed by Hoffman and Lauritzen a°. He found 
that the additional free volume contributed to the system 
by the solvent enhanced the growth rate by 1-2 orders of 
magnitude. Using experimentally measured solvent 
penetration rates, Makarewicz estimated the time scale 
ratio in Zachmann's model for several PET/solvent 
systems and predicted correctly solvent diffusion control 
of the overall crystallization kinetics in PET films thicker 
than 0.1 mm. 

Macrovoid formation 
Macrovoids refer to the large pores resulting from 

crystallization in the swelled state. Previous publi- 
cations 2A°-12'2°'21 refer to macrovoid formation as 
cavitation. Qualitative discussions of surface cavitation in 
connection with fibre systems 2 have attributed it to 
solvent rejection from crystallites developing in saturated 
surface layers. However, no clear understanding of the 
circumstances required for the formation of macrovoids 
exists. 

Makarewicz 9 and Desai a have done the most complete 
experimental investigations of macrovoid formation. In 
their thick PET specimens, macrovoids developed in 
surface layers almost immediately upon contact with 
interactive liquids. Contact with less interactive liquids, or 
with saturated vapours, produced only minor surface 
roughening. Wilkes 2°'21 recorded similar characteristics 
for PEN and PC surfaces. In the PET studies, the thick 
specimens showed no internal macrovoids. 

Under certain conditions, internal macrovoids are 
inferred or observed directly. In extremely thin PET films 
crystallized by interactive liquids, Lawton and Cates 31 
measured abnormally low densities and suggested that 
macrovoids occurred throughout the thin film. Titow et 
al. 15 also found reduced densities in solvent crystallized 
PC films. Using small angle X-ray scattering (SAXS), 
Jamee112 inferred small internal voids in thin, slightly 
oriented PET films crystallized in N,N dimethylform- 
amide. Electron microscopy detected internal macro- 
voids directly in PC crystallized by acetone 2° and in 
PEN crystallized by aniline and dioxane 2 t. 

MODEL DEVELOPMENT 

Previous efforts in modelling diffusion with induced 
crystallization focused on individual aspects of the overall 
phenomenon, such as the transport rates ~9 or the overall 
crystallization kinetics 7'1°. The model developed below 
combines the transport, crystallization and macrovoid 
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Table 1 Estimate of threshold concentration and ratio of 
threshold to solubility for isotactic polystyrene at 25°C 

Liquid c* [g c m  -3  ] c*/Co 

a Acetone 0.09 0.02 
b Methylene chloride 0.15 0.07 

Calculations use equations (1) and (2) from ref. (2) 
Phys~)cal data from ref. (19) and (35) 
a x for acetone at 30 °C 
b x 0 for methylene chloride at 85% activity 

phenomena to provide an understanding of their 
coupling. 

Assumptions 
Four simplifications allow a compact mathematical 

representation of diffusion with simultaneous 
crystallization: 

(a) Microscopic gradients do not significantly affect the 
overall crystallization kinetics. Developing crystallites 
tend to occlude mobile penetrants thereby elevating the 
penetrant concentration at the crystallite surface above 
that in the adjacent amorphous polymer as, for example, 
during the redistribution of additives in crystallizing 
polypropylene 32. This effect must be accounted for when 
the penetrant level strongly influences the crystallite 
growth rate. However, if the penetrant's diffusion velocity 
greatly exceeds the radial velocity of the growing 
spherulites, i.e. 

assumption is valid when the external penetrant 
concentration greatly exceeds the threshold for chain 
mobility characteristic of the rubbery state or, equiva- 
lently, if the threshold concentration lies well below the 
ultimate solubility of the diluent in the polymer, Co. In 
such cases the amount ofpenetrant contained in the glassy 
region ahead of the boundary is very small. Typical 
interactive diluents in PET satisfy this condition 2, as do 
the IPS systems noted in Table 1. The assumption is less 
satisfactory for PC systems 2. When the external activity 
only slightly exceeds the threshold one must account for 
solvent in the glassy region and for the time dependent 
internal processes throughout the specimen, as in Thomas 
and Windle's 2 s treatment of diffusion. 

Figure 1 shows a schematic concentration profile 
consistent with the above assumptions. (The symbols used 
in Figure I are described later in this paper.) 

Equations of change 
On the basis of assumption (d), one can ignore the 

transport of solvent ahead of the moving boundary. An 
appropriate one dimensional description for the transport 
behind the boundary in laboratory fixed Cartesian 
coordinates is 

O Oc d 3 
~-x DE(f,c)~x -- ~-X (1 --f)uc=-~(tl --f)c (la) 

~p 
~-+~-xuP =0  (lb) 

radial velocity of spherulite G IG 
. . . .  ,~1 

microscopic diffusion velocity D/I D 
~ = g ( c / )  tic) 

then no significant elevation of the penetrant con- 
centration occurs and the average concentration in the 
adjacent amorphous polymer governs the crystallite 
growth rate. Such is clearly the case for PET-diluent 
systems 1 o for which G ~ 50 nm s - 1, l (the length scale of 
the amorphous regions) g 2000 nm, and D (the penetrant 
diffusivity) ~ 107 nm 2 s - 1, so that lG/D ~- 10 -2. 

(b) Penetrant dissolution and transport occurs only in 
amorphous regions. A two phase model of semicrystalline 
polymers (impermeable crystallites embedded in an 
amorphous matrix) adequately explains the effect of 
crystallinity on the transport of small molecules 33. We 
adopt this model during the development of crystallinity, 
thereby ignoring interphase material with properties 
intermediate between amorphous and crystalline regions. 

(c) Immobilization of the diluent is negligible. Some 
diluent is unavoidably trapped in developing crystallites, 
but the amounts typically detected are quite small 
(~  4 wt% for methylene chloride in PET34). 

(d) Local expansion during swelling occurs instan- 
taneously, except near the moving boundary. Here we 
assume that the time dependent physical processes 
responsible for the transformation of the glassy polymer 
to a swollen rubber are confined to the immediate vicinity 
of the moving boundary. Sarti et al. 26'35 employed this 
assumption in their thermodynamic treatment of solvent 
crazing in atactic polystyrene. This requires that the 
penetrated portion of the polymer be severely plasticized, 
such that the material's response time is short. The 

p=p(c / )  (ld) 

with c the diluent concentration in the amorphous 
regions, f the volume fraction crystallized and p the 
overall polymer density. The equation (la) describes 
diluent transport due to molecular diffusion and bulk 
flow. A diffusion coefficient, DE, referred to the polymer- 
fixed frame a6 characterizes the former. DE depends on 

co 

r -  

8 u 

( j  

= Swoller, -!~ Glassy 

~ Drivincj force 

A 

x (d is tance in to sample) 

Figure 1 Schematic concentration profile during diffusion with 
induced crystallization 
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concentration and crystallinity. Swelling (i.e. distension of 
the sample) causes bulk flow with a mass average velocity 
U. 

Equation (lb) is a polymer mass balance. The polymer 
mass density, p, represents a local average over a volume 
larger than a crystallite but smaller than the length scale 
for changes in diluent concentration. 

Equation (lc), describing the local change in the 
crystalline volume fraction, contains a constitutive 
relationship, g(c,f), accounting for the influence of 
concentration and crystallinity on the local rate of 
crystallization. 

Equation (ld), an 'equation of state' for the swollen, 
crystallizing polymer, expresses the polymer density in 
terms of concentration and crystallinity, Equations (la)- 
(ld), together with appropriate initial and boundary 
conditions, determine the transient profiles for c, p, u andf  
during diffusion with induced crystallization. 

Initial and boundary conditions 
Assuming instantaneous surface saturation, approp- 

riate initial and boundary conditions for sorption in an 
initially dry film are 

c(x,0) = 0 f o r 0 < x < A  

c(O,t)=Co for t > 0  

dc dA 
- DE~-x- x + [(1 --f)uc] = [(1 --f)c]-d- [- for x = A  

D= is the amorphous phase diffusivity, qJ(< 1) accounts for 
the increase in diffusion path length with crystallinity 
since penetrant molecules must migrate around crystal- 
lites. It depends on the degree of crystallinity and the 
specific crystalline morphology. We assume W equals the 
amorphous fraction by analogy with the diffusion of 
oxygen, nitrogen, carbon dioxide, methane 39 and water 41 
in thermally crystallized, unoriented PET. The blocking 
factor, B(> 1), accounts for the portion of amorphous 
polymer ineffective for transport, such as 'dead end' 
passages, or extremely narrow channels between crystal- 
line lamellae. It can be absorbed into an effective 
amorphous diffusivity, D, leaving DE = D(1 - f ) .  

The effect of concentration on the diffusivity can be 
accommodated rather neatly. For organic solvents, the 
free volume theory 42 predicts a precipitous rise in 
diffusivity at low concentrations, culminating in a 
maximum for the highly swollen material. We appro- 
ximate this behaviour by a discontinuous diffusivity, D=, 
which jumps from a negligible value below some critical 
concentration to a finite value above the critical level. 
Choosing the critical concentration as the threshold value 
implies a constant diffusivity in the rubbery polymer 
behind the front and a negligible amount of solvent in the 
glass ahead of the front, consistent with assumption (d). 

Local crystallization rate 
Following Stein and Mirsa 43 the growth rate of a single 

isolated spherulite of radius r is 

where A is the position of the moving boundary. The last 
relationship, the moving boundary condition, expresses 
conservation of solvent at the rubber/glass interface 
neglecting the solvent in the glass. 

In the glassy region near the moving boundary, 
polymer molecules respond to swelling forces at a finite 
rate. We account for this kinetic process through a semi- 
empirical relationship adopted from Astarita aT'3s 

dV~ 2dr 2 
dt = 4nr ~[ = 4rcr G(c) 

where ~ is the spherulite's volume. The radial growth 
rate, G(c), depends only on the external diluent 
concentration. The total growth rate for N, spherulites in 
a volume VE, assuming simultaneous (i.e. athermal) 
nucleation, is 

dA =KEc(A)-c*]" 

A(O)=O 

where c* is the threshold concentration on the rubber side 
of the interface (Figure 1). This equation relates the rate of 
swelling by n th order kinetics to the excess solvent 
concentration above the threshold on the rubber side. 
Curve fitting of swelling data in noncrystallizable glassy 
polymers indicates n -  2-3. 

Sarti 26'3s has shown this approach to be relevant when 
crazing occurs at the moving boundary. Here, the 
penetrant activity at the front depresses the chemical 
potential of the polymer on the swollen side below that in 
the adjacent glass, resulting in an osmotic tension in the 
glass which drives the crazing process. Considering the 
visual evidence for cracking or crazing at the boundary in 
glassy PET and PC, this approach seems more 
appropriate than that postulated by Thomas and 
Windle 27'2s where the osmotic tension causes viscous 
flow near the boundary. 

) 
The correction factor in parentheses accounts for 
spherulite impingement, which limits the total volume of 
the spherulites, Vr, to Vr °. Since 

then 

N,4 3 VT 

df . rdlnVE { . .  N~'~ 1/3 -~0 JG(c)'2/3(f°-f ) 

with fo=VOIVE . Neglecting changes in lie during 
crystallization, the right hand side of the last equation 
becomes the function g(cf) in (1). We require an initial 
condition,f=fi ,~ 1, interpreted as the volume fraction of 
nuclei frozen into the glass ahead of the moving boundary. 
These may be incipient nuclei retained from the melt, 
glassy heterogeneities, or nucleating agents. 

The effective diffusivity, DE 
According to Peterlin 33, DE=WD=/B, where qJ is the 

geometric impedance factor, B is the blocking factor, and 

Influence of bulk transport 
Scaling the transport equations with a time scale (t*) 

and length scale (x*) for which diffusion and swelling have 
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Table 2 Solvent volume fraction in amorphous polymer and polymer density at saturation 

Liquid Vl 0 P0 (g cm-3) A pO/p*  

PET a Acetone 0.36 1.2 0.10 
Nitromethane 0.38 1.1 0.15 
Dioxane c 0.47 1.0 0.22 
Methylene chloride 0.54 1.0 0.27 
Dimethyl formamide 0.56 0.8 0.43 

PC a Acetone 0.40 0.9 0.24 
Carbon tetrachloride 0.51 0.8 0.32 

IPS b Acetone 0.26 0.9 0.17 
Methylene chloride 0.37 0.8 0.27 

a Physical data from ref. 2 
b Physical data from ref. 22 
c Physical data from ref. 9 and CRC Handbook, 46th edition; value of f0 from unpublished results 

comparable rates reveals the relative importance of bulk 
transport through the magnitude of the resulting 
dimensionless constants in the convection terms. Equat- 
ing the characteristic distances penetrated by diffusion 
through swollen polymer and by the moving boundary, 
i.e. 

X* = X / / ~  = Uot* 

gives t*= D/U 2 and x*= D/Uo. Here Uo represents the 
characteristic velocity of the moving boundary. Suitable 
dimensionless variables then follow as 3 7,3 8 

z = t/t* = tUZo/D 

= x /x*  = x Uo/D 

2 = A/x*  = A Uo/D 

Convenient choices for the dimensionless penetrant 
concentration and polymer density are 
y = (c - c* )/(Co - c* ) and F = (p - p*)/(po - P*) = Ap/Apo, 
respectively, where p* is the polymer density at the 
moving boundary and Apo is the ultimate change in p. 

Introducing the dimensionless variables into equation 
(1) gives the scaled transport equations 

8 r O 
1 - - f ) ~ - -  (Apo/p*)~-~(~l --f)v(y +q)=  

or  +a p,o vr ) 
p 

O(1-f)(7+q)  

(2a) 

(2b) 

with v = up*/UoApo and q =c*/(c o -  c*) representing the 
dimensionless mass average velocity and threshold 
concentration, respectively. 

For small Apo/p* equations (2a) and (2b) decouple, and 
the convection term in the penetrant transport equation 
can be neglected. We adopt this approximation for 
mathematical simplicity thereby neglecting volumetric 
changes accompanying mixing and crystallization as 
done in the derivation of g(cf) .  

To support this approximation, we have estimated 
Ap o/P* for a variety of systems using additive mixing rules 
for amorphous polymer and solvent and for amorphous 
and crystalline phases. Then, the volume fraction diluent 
at saturation, v °, and the corresponding overall polymer 
density, Po, are 

o oF fo G + XOpa) 

po =fopc +(1 -fo)(1 - v°)p= 

where x° is the ultimate overall mass fraction of solvent,fo 
the ultimate crystallinity, and p= and Pc the amorphous 
and crystalline polymer densities, respectively. Taking p* 
as the amorphous polymer density gives the values listed 
in Table 2 for Apo/p*. The ratio is acceptably small in the 
first few PET systems and the first IPS system, but 
unfortunately is appreciable in the remainder. 

MATHEMATICAL MODEL 

The approximation of small Apo/p* leads to the following 
dimensionless expressions for the coupled transport and 
morphological development during sorption in initially 
dry films: 

8 ,.,~7 ~(I - f ) (y  +q) (3a) 

7(0,0)=1 (3b) 

y(~,O) = 0 for 0 < ~ < 2 (3c) 

7(O,z) = 1 

O~K=(7 +q )a~---2 r 

d~--=d2 Y" ~" 2(0) = 0 

(3d) 

=x nwu ( fo - f )  

ft0)=fl 

(3e) 

Although written for semi-infinite media, the above 
readily adapt to films with a dimensionless sample half 
depth 2p by replacing the moving boundary condition 
with a no flux condition when 2 = 2p. The dimensionless 
crystallization rate 

D I / Ns"Xl/3Go S 

f l  = Uoio2 t36"VE-E) fo 
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represents the ratio of the characteristic time for 
transport, t*, to that for complete spherulite development. 
Here, Go is the pre-exponential factor in the expression for 
the spherulite's radial growth rate 1°'29'3°, G(7), while 
S= Gmax/Go=max(O<7< 1) {G(y)/Go} is the maximum 
value of G(y)/Go in the concentration interval experienced 
by the amorphous, rubbery polymer. The O(1) function 
h(7)=G(v)/GoS accounts for the concentration de- 
pendence of the spherulite's radial growth rate. Both S 
and h(y) are affected by the nature of the solvent and 
temperature. Details of their evaluation are given 
elsewhere29,34. 

Macrovoid formation 
Examination of equation (3a-e) reveals a coupling 

which provides the basis for describing macrovoid 
formation. Since the amorphous fraction appears in the 
accumulation term of the diffusion equation, crystalli- 
zation produces an apparent source of solvent due to the 
expulsion of diluent from developing crystallites. Hence, 
crystallization tends to elevate local concentrations above 
the boundary values, ultimately leading to local satu- 
ration and phase separation. This coupling produces 
additional moving boundaries delimiting the regions of 
saturation and phase separation within the material. The 
solution of equation (3a-e) determines the position of 
such boundaries, 2s(0, which separate saturated regions 
from areas where gradients still exist. We will discuss this 
embedded moving boundary problem by considering a 
single saturation boundary moving monotonically away 
from the sample surface. In this case the domain of the 
diffusion equation in equation (3a-e) becomes 
;ts(T)< ~ <2(T) with 7(2~(T),T)= 1 as the lefthand boundary 
condition. Within the region 0 < ~ < 2,(z), the condition 
7= 1 replaces the diffusion equation, while the crystalli- 
zation equation still applies throughout the penetrated 
portion. 

Within saturated regions, the extent of phase sepa- 
ration can be related to the local crystallization. 
Neglecting possible solvent transport via pressure driven 
flow, the solvent is conserved everywhere within the 
saturated domain, therefore 

(1 - f  -e)Co + ep, =constant 

where e is the local void fraction. Substituting v ° for co/p~ 
and noting that e = 0 when saturation first occurs leads to 

U o 

e(~,z)=~[ f (~,  ) - f  (~)] for 0 
H-viJ 

(4) 

where fc(~) is the crystallinity when phase separation 
commences, that is, when the saturation boundary first 
reaches ~. Equation (4) shows that the maximum possible 
voidage occurs when f f = f l ~ 0 ,  i.e. when the polymer 
saturates prior to any appreciable crystallization. 

The single saturation boundary discussed above 
provides a convenient framework for developing equation 
(4) but does not necessarily represent the actual 
circumstances. For example, saturation boundaries do 
not appear in semi-infinite media since diffusional 
gradients always transport solvent away from regions of 
rapid accumulation 29. Conversely, in finite slabs, two 
saturation boundaries may appear 34. 

Integrated properties 
The most important predictions are the solvent uptake 

and the overall volume fraction crystallized. The total 
weight gain equals the integral of the solvent con- 
centration over the penetrated region 

~OT(T) = f{e(~,z)p*, + [1 -f(~,~) - e(#,~)][y(~,z) + q]}d~ 

0 

o ~, 

(5) 

The second expression resolves the penetrated portion 
into saturated and unsaturated regions. For finite media, 
the relative weight gain follows from normalization by the 
sample thickness. 

We define the overall volume fraction crystallized 
behind the moving front by 

0 

(6) 

or for a finite sample 

2p /. 

f ° (z '=~;f( ' , z ,dz=~;f( , , z ,dz  +fl(a  - ~-~) 

0 0 

(6) 

LIMITING SOLUTIONS 

Short and lono time behaviour 
Analytical solutions to equations (3a)-(3e) and (4) do 

not exist. We can derive useful limiting forms, however, for 
comparison with selected systems. In particular, at 'short' 
and 'long' times analytical solutions are possible when the 
crystallization rate, is 'large' or 'small'. For the moment 
we defer the definition of short and long times or large and 
small ~, but develop these limiting solutions for both 
semi-infinite and finite media. 

Initially, swelling kinetics control the transport since 
molecular diffusion through the thin, penetrated surface 
layers does not inhibit the swelling process at the moving 
boundary 2'37'3s. Under these circumstances diffusional 
gradients behind the moving boundary are negligible and 
equations (3a)-(3e) reduce to 

7(0,0) = 1 

?(~,0)=0 for 0<~ <2 

7 ( ; 4 0 , 0  = 1; ;~s(0) = 0 

d2 
. . . .  , ~ ( 0 )  = 0 
d'r -Y , 

(7a) 

These equations govern transport at short times. 
At long times diffusion is the governing factor because 

of the long path to the moving interface for penetrant 
molecules. In this case significant gradients exist behind 
the front, and the driving force for swelling is minimal (i.e. 
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7(2,z)=0). Under these circumstances the nonlinear 
moving boundary condition becomes a linear Stefan 
condition, eliminating the effect of swelling kinetics. 

The treatment T M  of the analogous problem without 
crystallization determined the long time behaviour by 
solving the linear Stefan problem with instantaneous 
surface saturation as the initial condition. The authors' 
argument that the long time behaviour of the nonlinear 
and the corresponding Stefan problems were identical 
was verified by numerical integration of the former. 
Similarly we presume that the analogous Stefan problem 
governs the long time behaviour with crystallization: 

~0~, 0(1 -f)(~, +q) 

:40,0) = 1 

7(~,0)=0 for 0 < ~ < 2  

70.,(z),z) = 1 ; 2dO)-- 0 

/~ dX 

(7b) 

We will subsequently verify this presumption with 
numerical solutions to equations (3a)--(3e) for large values 
of f~ which approach the solution to equation (7b). 

We will now develop the asymptotic solutions for large 
and small fL 

Asymptotic solutions for large 
For sufficiently large f2, the 

crystallinity reduces to a jump 
moving interface, 

kinetic equation for 
condition across the 

f(~) ---ft + ( f 0 - f l ) H ( 2 -  ¢) (8) 

where H is the step function. This approximation 
linearizes the diffusion equation. 

The short time asymptote of equations (3a)-(3e) for 
large values of f2 results from integrating the simplified 
limit (see equation (7a)) with the jump condition off: 

A-1 

2=) .s=r  

~o = (1 - fo  - Co)(1 + q)r 

(9a) 

mediately behind the moving front, hence 

0 

(9c) 

Note the void fraction has the maximum possible value. 
The asymptotic solutions at long times result from 

integrating the simplified limit (7b), linearized by the jump 
condition on f. Solvent conservation at the moving 
interface gives the appropriate Stefan condition: 

8 7 (1 - f t )  d2 

-~-~ r = q ~ - f o )  dr 

Defining the effective threshold c*'=c*(1-f0/(1-fo) and 
rescaling the concentration variable 7=(c-c*3/(Co-C*~), 
allows a convenient representation of the linearized long 
time limit: 

027 ~ 

~(o,o) = 1 

7(~,0)=0 for 0<~ <2 v 

~, (0 ,0  = 1 

Q and q are related by 

(lo) 

- -  " ~  - - f o  g q 

whenft is small compared tOfo. In addition to the criteria 
developed for long times and large Q, we require 

q 
- - <  (1 -fo)  (1 +q) 

for equations (8) and (10) to replace equation (3). 
The methods discussed by Dankwerts 44 yield the 

following dimensionless solutions to equation (10) for the 
concentration profiles, penetration distance and weight 
gain in semi-infinite media: 

The linear dependence of 2 and co on time reflects the 
initial swelling controlled transport. We can apply these 
relationships to 'thin' films if the time for film penetration, 
rp, is sufficiently short. Equation (9a) would only apply 
before complete penetration (i.e. 2 <2p) and, since no 
concentration gradients remain when 2 = 2p, sorption is 
complete at r = rp. 

Combining equations (6), (8) and (9a) gives the overall 
crystallinity in a thin film, which increases linearly with r 
until reaching the ultimate value at rp, 

~<~,, f ° (~ )=A+( fo -A) (~)  

r 1> zp .fo =fo 

(9b) 

Equation (4) then implies that macrovoids result 
throughout the sample since saturation occurs ira- 

~ =  l erf ¢/2,/~ 
erd M 

;~ = 2 M x/~ 
M: (°=2M(1-fo)Qe x~ 

( l l a )  

M is given implicitly by 

1 
- -=  (rr)t/2M e M' erfM 
0 

The ~ dependence in equation (lla) reflects the 
diffusional impedances inherent in the long time 
behaviour. 

Equations (1 la) readily adapt to the case of films thick 
enough that the time for complete penetration of the 
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specimen satisfies the criteria for long times. Since we 
ignore solvent in the unpenetrated portion of the film, 
equations (lla) apply directly for z<zp (i.e. ;t<2p). When 
z > zp, the penetration kinetics obviously terminate, as do 
the crystallization kinetics represented through the jump 
condition on f However, equations (1 la) evaluated at r e 
reveal concentration gradients which drive further 
sorption after penetration. We resolve the continued 
dynamics by solving equation (10) as an initial-boundary 
value problem with a no flux condition at the centreline 
and the solution coinciding with the concentration 
profiles in equations (lla) at z v The results describe the 
decay of the concentration gradients and the additional 
weight gain after the complete penetration of the film as 

or) 

y = 1 - - -  V A e -  ,k,/~,)'(~-~,)sin k ~-- 
erfM .__z7' 0 " "Ap 

oO 

co(r > Tp) 2 ~ A,e-lk"/a'l'('-~'~ 
co(~) =1 erfM(l+Q),=o 

(11b) 

where 

z~=22/4M 2 

(2n + 1) 
k,= rr n=0,  1,2. . .  

2 

1 k 2M 2 1 ~ ,  . / / k .  '~ 
A,=_---e-* "/ ) -_----e ( - 1 ) R e / / i w  zcz..+iMI] 

k. k, \ \ZM // 

with R e representing the real part of the argument 
containing the complex error function w as . (If we recall 
that y is scaled on the effective threshold concentration, 
c*', in equation (11 b)). 

The corresponding predictions of the overall crystal- 
linity result from combining equations (6), (8) and (1 la) 
into 

~<rp f ° ( O = A  + ( fo- f l ) (z~)  x/2 

r~>~p f ° = f o  
(1 lc) 

So, we find diffusionally limited crystallization kinetics. 
Finally we apply equation (4) to predict the final 

morphology. The jump condition on f and the con- 
centration profiles predicted in equation (lla) indicate 
that crystallization is complete before local saturation, 
except at the surface which is saturated initially. Hence, 
cavitation with the maximum possible value is predicted 
only at the surface 

/)o 
1 

e(~) = % = ~j--q~..o~(fo-f*) for ~ =0 
(t --v,) 

(I Id) 
5=0 fo r0<~<2~ 

Behaviour for small Q 
For small f~ in finite media crystallization occurs on a 

much longer time scale than does transport, so the 
processes decouple. Hence, crystallization does not 
influence the transport process and therefore equations (3) 

reduce to Astarita and Sarti's description of anomalous 
diffusion in non-crystallizable, glassy polymers 37. Their 
short and long time asymptotes resemble those just 
presented; swelling kinetics control at short times while 
molecular diffusion controls at long times. Adaptations to 
finite media (thick and thin films) are obvious. 

For small values off~, crystallization occurs subsequent 
to saturation in any finite sample, so the specimen 
crystallizes as a saturated bulk. The lumped parameter 
version of the crystallization equation in equations (3), 
with h(y) evaluated at 7 = I, describes the variation o f f  
with time. Integration gives 

/ f'~ t/3 

- 3 L g-tan v/~ 

when/1 is nearly zero. Equation (12) closely matches the 
corresponding Avrami expression46'47; displaying the 
characteristic sigmoidal kinetic curve usually associated 
with bulk crystallization. Figure 2 shows the comparison 
for methylene chloride in PET at 22°C and a volume 
fraction of 0.4. 

Uniform cavitation at the maximum value throughout 
the sample should result according to (4) since f c =fl.  

Criterion for application of asymptotic solutions in finite 
media 

We now define four distinct sets of criteria for the 
validity of the four limiting cases in finite media: thin and 
thick films for large values of Q, and thin and thick films 
for small values of f~. 

Large Q. The time when the asymptotic limits for the 
weight gain in thin and thick films coincide, % serves as an 
estimate for the change over from linear to square root of 
time dependence in the weight gain 37. In the case of fast 

IO 

0.8 /~///A 

/ 

0 . 6  - i i 

0 .4 -  

0 .2 -  

0 . ~ ' l  I I I I 
5 IO 15 20 25 

Time (s) 

Figure 2 Comparison of equation (12) (curve A) with the 
corresponding Avrami expression (curve B) for methylene chloride 
in PET at 22°C and a volume fraction of 0.40 
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crystallization, combining the weight gain in equation (9a) 
with that in equation (1 la) gives 

.2 2M,((1-v°)(1-fo) Qq]2; 
(13) 

where equation (4) with i f = 0  has been used for eo. 
Substitution into the equations for penetration depth in 
equations (9a) and (1 la) then yield the desired thickness 
criteria for thin film behaviour as 

2P'~4M2e2M'~(l~v~)v(°l-f°)(1Qq)} ( - , - f o )  (14a) 

and for thick film behaviour as 

- , .  2 M=(1--vO)(1--fo)f Q ) 
(14b) 

Strict inequalities (i.e. ,~ or >>) are appropriate since, as 
shown subsequently, the transition from thin to thick 
behaviour is actually quite gradual. 

Of course these criteria apply only for sufficiently large 
f~ to justify the jump condition on f To judge this, the 
kinetic equation for f in equation (3) must be rescaled 
using the characteristic time for film penetration. If the 
resulting renormalized crystallization rate is sufficiently 
large use of the jump condition is permissible. 

For thin films, rescaling the governing transport 
equations in (7a) with 

crystallization. Since 

22pf]=Ap 2 36ztNs 1/3 GoS 

D VE f0 

time scale for diffusion controlled transport 

time scale for crystallization 

condition (15b) corresponds to diffusion controlled 
crystallization kinetics, exactly consistent with the 
mathematical limits derived earlier (see equation (11)). 
Furthermore, 2~f~ depends on the square of the film 
thickness, implying thicker films will tend to display rapid 
crystallization behaviour and diffusionally limited crys- 
tallization kinetics. The combination ,2~Q is exactly 
analogous to the parameter in Zachmann s model 7 which 
determines the relative influence of diffusion on the 
crystallization kinetics. Hence, Zachmann's analysis 
implicitly assumes the condition shown by condition 
(14b). 

Small values off~. We will now obtain the criteria for 
thick and thin films in the case of small values of 
following the procedure used above. Because transport 
largely precedes crystallization in this case, the criteria 
follow directly from the results of Astarita and Sarti 3v. 
Specifically, for thin films 

(1+/ 2p '~ 4m2e 2"~ (16a) 

= ~/2~ = x / A .  while for thick films the following condition 

9= z/2p = tUo/Ap 

gives 2~q for the renormalized crystallization rate. 
Therefore 

q 
2p ~ 4m2e"il +q) 

must be satisfied, where m is defined by 

(16b) 

2zO ,> 1 (15a) 

justifies the jump condition. Hence conditions (14a) and 
(15a) are both necessary for the thin film, large 
asymptotes (9) to be applicable. Since 

2¢Q= A~ 36reNal/aGo S 

Uo VE fo 

time scale for swelling controlled transport 
time scale for crystallization 

condition (15a) implies swelling controlled crystalli- 
zation, which requires extremely large values off~. 

For thick films, rescaling the transport equations in (7b) 
with 

= ~/2 p = x/A p 

f=  z/2zp = tO/A2p 

2 gives 2pf~ for the renormalized crystallization rate. So, 

2~f2 ,> 1 (15b) 

assures that the jump condition properly represents 

1 
- =  (n)l/2mem'effm 
q 

In addition, the conditions for small values of f~ follow 
from the rescaling procedure. With condition (16a) for 
thin films: 

2~,Q ,~ l (17a) 

is needed and with condition (16b) for thick films 

2~f2 ,~ 1 (17b) 
is needed. 

Note that slow crystallization in thick films requires 
extremely small values of D since conditions (16b) and 
(17b) must be simultaneously satisfied. Also, since the 
lefthand side of equation (17a) depends directly on the film 
thickness, thin films will tend to display overall 
crystallization controlled by the spherulite growth rate. 

Table 3 summarizes the results. 

Numerical calculations for large values of f~ 
Equations (3a)-(3e) have been solved numerically for 

the penetration depth and concentration distributions 
using finite difference methods, discussed elsewhere 29. A 
trapezoidal rule approximation of equation (5) gives the 
weight gain kinetics. We now compare briefly the 
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Table 3 Asymptotic formulas for diffusion with induced crystallization in films 

Case Description Criteria Weight gain Crystallization Macrovoids 

A thick films, fast (14b), (15b) diffusion controlled diffusion controlled surface only 
crystallization 

B thin films, slow (16a), (17e) swelling controlled spherulite growth uniform throughout 
crystallization controlled specimen 

C thin films, fast (14a), (15a) swelling controlled swelling controlled uniform throughout 
crystallization specimen 

D thick films, slow (16b), (17b) diffusion controlled spherulite growth uniform throughout 
crystallization controlled specimen 

c- 
O 

u 

8 u 

c 

E 
c5 

IO 

0.8 

0.6 

0.4 

0.2 x=Q45~ 

% 2 

" ' ~  x=225.O ~'- 

z = 8.07 " ~  

4 6 14 u 
E 

( Dimensionless distance) k~ 

3 Figure 3 Evolution of concentration profiles with time. ( - - )  
numerical solution of (3); ( . . . . .  ) thick film asymptotic solution for 
large Q(case A). Model parameters are given in the text 

behaviour of equation (3) with the asymptotic solutions 
using reasonable model parameters34: Q=80, q---1.5, 
n=2.0, fo=0.10, f1=0.05 and h(v) evaluated for me- 
thylene chloride in PET having a volume fraction of 0.4 in 
the amorphous component at saturation. 

The numerical calculations are for a semi-infinite slab, 
but apply to finite films for times less than the penetration 
time, %, since the model neglects solvent transport ahead 
of the moving boundary. Therefore, one can compare the 
numerical and asymptotic predictions for 0 < ~ < zp, where 
the limiting conditions, (14-17), and the corresponding 
asymptotic expressions for 2p(~p) define %. Considering ,~ 
and ,> to be satisfied by an order of magnitude difference, 
for the parameters specified, case A applies if zg > 8, case B 
if Tp < 0.001, and case C if zp_~ 0.1; the conditions for case 
D cannot be satisfied. When appropriate, subsequent 
plots show the bounds on zp along the time axis. 

Figure 3 shows the concentration profiles evolving with 
time, giving a clear picture of the transition from swelling 
controlled behaviour to diffusion control. The profiles to 
the left show a large discontinuity corresponding to the 
substantial driving force for the swelling process at the 
glass/rubber interface. The swelling kinetics dictate the 
dynamics of sorption since the path for migration of 
solvent to the boundary is minimal. As the penetration 
depth increases, molecular diffusion from the surface 
begins to limit the supply of diluent to the boundary, 
curbing the driving force for swelling. The velocity of the 
front diminishes, and the profiles behind the interface 
begin to display typical parabolic shapes. At very long 
times the extended path for molecular migration through 
the penetrated rubber causes solvent diffusion to control 
the transport. The dashed lines in Figure 3 show profiles 
calculated from the thick film, fast crystallization 
asymptote, illustrating the approximation for ~ 8 and 

IO 

8 

4 

0 ~ 
0 8 

. /  

CaseC / '  
Case B / / 

.,U 
2 4 6 

¢2- (dimensionless time d2) 

I I l 1 I 

Case C Case A 
Case B 

Range of application 

Figure  4 Dimensionless weight gain, (o, versus the square root of 
the dimensionless time, ~/:,. ( ~ )  numerical solution of (3); ( - - -  
( - - - )  thin film asymptotic solution for large Q (case C); ( . . . . .  
) thin film asymptotic solution for small Q (case B); ( . . . . .  
) thick film asymptotic solution for large Q (case A). :c from (13) 
is also shown. Model parameters are given in the text 

the gradual decay of the discontinuity at the moving 
interface. 

Figure 4 shows the weight gain plotted against the 
square root of time, the common representation of 
experimental data. The numerical and analytical results 
agree closely for small rp (cases B and C) and fairly well for 
large ~p (case A). The latter agreement improves as zp is 
made larger, supporting the earlier presumption that the 
Stefan problem (equation (Tb)) adequately represents the 
model for long times. The critical time calculated from 
equation (13), ~c, appears to be a valid estimate for the 
change over from swelling to diffusion control. 

Figure 5 shows the sample half depth, 2p, versus the time 
for penetration of the film, %. For the limit of rapid 
crystallization in thin films (case C), the criteria are quite 
restrictive, limiting the asymptotic representation to 
zp_-__ 0.1, where the numerical and asymptotic results show 
gratifying agreement. Rapid crystallization in thick films 
requires the condition ~>8 to be filfilled; so that the 
equations in (11) fit for an infinite range of ;tp. 

Similarly, for slow crystallization, the criteria for thick 
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Figure § Dimensionless sample half depth, 2p, v e r s u s  the 
dimensionless penetration time, Zp. ( . . . . .  ) numerical solution to 
(3); ( ) asymptotic solutions (cases A, B and C). Model 
parameters are given in the text.  

films (ease D) are more restrictive than for thin films (ease 
B). Clearly the criteria for cases C and D limit their 
practical utility. 

Fioure 5 also shows the transition between the 
asymptotic limits to be quite gradual, and illustrates that a 
considerable domain outside the range of the analytical 
approximations exists. Determining the model's be- 
haviour therein motivates a parameteric study of 
equation (3) via numerical simulation. This is discussed in 
another article 29. 

CONCLUSIONS 

The model presented herein accommodates the features 
observed during diffusion with induced crystallization. 
Specifically, the description is consistent with 

(a) existence of a threshold activity 2, 
(b) appearance of moving boundaries a,9,16,17,2 2 
(c) penetration depth and weight gain increasing 

linearly with ~ in thick films a'9'17,19,20, 
(d) continued weight gain after complete penetration in 

thick films 9, 
(e) initial weight gain increasing linearly with time in 

thin films 14ASA9'22 

(0 surface macrovoids produced by liquid 
contact 8,9,2 0, 

(g) internal macrovoids in thin films 12a9. 

The physics underlying the model allow clear in- 

terpretations of several experimental observations. We 
have identified the threshold activity for crystallization 
with that needed to initiate propagation of the moving 
boundary. The cracking near the moving boundary in 
PET 9 and PC 16'17 systems corresponds to yielding 
and/or failure of the glassy polymer under osmotic 
stresses. 

The asymptotic analysis identified four limiting types of 
behaviour for the process in finite media (Table 3). Cases A 
and B probably account for most practically encountered 
systems owing to the very restrictive criteria for cases C 
and D. 

The combination of features predicted by case A is 
readily observed in several PET systems a'9. These 
simultaneously show penetration depth, weight gain and 
overall crystallinity increasing linearly with x/~, and 
macrovoids restricted to surface layers only. Here, the 
model suggests that a long diffusion path develops 
between the film's surface and the moving boundary, 
producing diffusion controlled transport and crystalli- 
zation. The solvent occluded from crystallites during 
rapid crystallization just behind the front is accom- 
modated by partially swollen polymer, inhibiting the 
formation of internal macrovoids. 

Similarly, thin PC films 1.'1s'19 show the features 
predicted by case B. Here, case II weight gain occurs 
initially and macrovoids develop internally. The model 
suggests the swelling process controls the transport since 
no gradients develop behind the front. Internal mac- 
rovoids result since the polymer crystallizes from a fully 
swollen state. 

Numerical calculations demonstrate that a consider- 
able region between the limiting cases exists, requiring 
numerical simulations to determine the model's be- 
haviour. These, and comparisons of the model's pre- 
dictions with published experimental results, are pre- 
sented elsewhere 29. 

NOMENCLATURE 

B = blocking factor. 
c = local mass concentration of diluent in amorphous 

polymer. 
Co =ultimate solubility of diluent in amorphous 

polymer. 
U' = threshold concentration, glassy side. 
c* = threshold concentration, rubbery side. 
c*' = effective threshold, rubbery side. 
D E =effective diffusion coefficient of diluent, polymer 

fixed frame. 
D =effective amorphous domain diffusion coefficient, 

polymer fixed frame. 
Do =amorphous domain diffusion coefficient, polymer 

fixed frame. 
= local volume fraction crystallized. 
= ultimate crystallinity. 
= volume fraction nuclei. 
=crystallinity when saturation first occurs. 

G = radial growth rate of a spherulite. 
Gma x = maximum value of G for c* < c < Co. 
Go = preexponential constant in expression for G. 
K = empirical constant in rate expression for A. 
l =characteristic length of local amorphous domains. 
n = empirical exponent in rate expression for A. 
Ns = number of spherulites in a volume element. 

f 
fo 
fl 
fc 
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r = radius of spherulite. 
S = Gmax/Go. 
t = l ab t ime .  
t* =characteristic time scale for transport. 
tp =penetrat ion t ime=t ime  for moving boundary to 

reach the film's centreline. 
u = mass average velocity. 
v ° =ul t imate  volume fraction diluent in amorphous 

domains. 
V E = volume of a crystallizing volume element. 
Vs = volume of a single spherulite. 
Vr = total volume of spherulites in a volume element. 
Vr ° = maximum total volume available to spherulites in a 

volume element. 
W = weight gain per unit cross section. 
x = distance into polymer from surface. 
x* = characteristic length scale for transport. 
x ° =final  overall mass fraction sorbed by polymer. 

G R E E K  SYMBOLS 

e =local  void fraction. 
= geometric impedance factor. 

A = position of moving boundary. 
Ap = half thickness of film. 
p = polymer mass density. 
p* =po lymer  mass density at the threshold 

concentration. 
Po = ultimate polymer mass density. 
Ap = p - p* = local change in polymer mass density from 

the value at the threshold. 
Apo= ultimate change in polymer mass density. 
po = dry, amorphous polymer density. 
Pc = pure crystalline polymer density. 
p~ = pure solvent density. 

DIMENSIONLESS VARIABLES AND 
PARAM ETERS 

F =change  in polymer density. 
=diluent concentration in amorphous  polymer. 

_~ = distance. 
= rescaled distance in films. 
= position of the moving boundary. 

2~ = position of the saturation boundary line. 
2p = sample half depth. 
p* = solvent density. 
z = time. 

= rescaled time in films. 
zp = penetration time. 
v = mass average velocity. 
q = threshold concentration, 
Q = effective threshold concentration. 
f~ =crystallization rate. 

= total weight gain. 
o~ a = weight gain in amorphous polymer. 
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